Research Cores

The COBRE CMADP brings together physical and biological scientists and engineers in a unique manner by combining cutting-edge enabling technologies for the analysis of disease-related molecular pathways. The CMADP's three core laboratories enable a variety of research applications that allow investigators to explore new pathways of the disease process:

  • The Genome Sequencing Core (GSC) provides researchers with next-generation sequencing technologies, as well as experimental design and analysis of sequence data. The GSC is involved in the identification of genetic (genotypic) elements that underlie the disease and disease pathways. Projects in the GSC include whole genome assembly, genome re-sequencing for identification of mutations important in development and disease, transcriptome analysis (RNA seq), variant mapping and genotyping, and identification of transcription factor interaction sites using chromatin immunoprecipitation combined with DNA sequencing (ChIP seq).
  • The Microfabrication and Microfluidics Core (MMC) makes resources and personnel available for the production of micro- and nano-scale devices to be used by project investigators for their studies. Equipment and training are available to investigators for the fabrication of devices for biomedical, biophysical, and bioanalytical studies related to disease pathways. Research applications for such devices include clinical diagnostics, pharmaceutical analysis, single-cell analysis, imaging, sensing, and biophysical applications, and broader applications in engineering, physics, and chemistry.
  • The Synthetic Chemical Biology Core (SCBC) offers expert design of molecular probes and synthesis of both small molecules and peptides, with an emphasis on the generation of fluorescent and other tagged molecules, as well as bioassays of molecular probes, including in vitro whole cell assays and in vivo assays using zebrafish. As needed, in addition to fluorescent probes, the SCBC can synthesize known but commercially unavailable compounds necessary for biochemical studies.
    • This core laboratory was previously known as the Molecular Probes Core, established by the CMADP upon its inception in 2012. In July 2016, the CMADP's Molecular Probes Core was combined with the medicinal chemistry core laboratory of KU's COBRE Center for Chemical Biology of Infectious Disease to form this joint Synthetic Chemical Biology Core. The SCBC leverages resources from both COBRE grants to best provide investigators with comprehensive synthetic chemistry capabilities.

    Microfabrication & Microfluidics Core

    These core facilities are designed to operate synergistically: imaging of model organisms treated with fluorescent probes developed through the SCBC are facilitated by the use of microfabricated devices developed in the MMC; screening of mutant organisms against these probes are used to discover novel disease-related phenotypes that can be precisely mapped to identify specific targets through the next generation sequencing offered by the GSC. These technologies are then made available to biomedical scientists through collaborations, publications, and potential commercialization.

    Together, the CMADP's cores seek to catalyze research that spans the chemistry-biology interface, empowering investigators to identify and solve important interdisciplinary research problems in the life sciences. Core personnel provide a wide range of expertise spanning numerous fields including synthetic organic chemistry, computational chemistry, bioinformatics, analytical chemistry, genetics, and imaging technologies.


Recent News

February 2017
CMADP Project Investigators co-author Top Downloaded article in Lab on a Chip

CMADP Co-I awarded R01 from NIH National Cancer Institute

CMADP Graduate's research featured on cover of Genetics and in other journals

October 2016
CMADP Co-I receives Mathers Foundation grant

View all news »

Upcoming Events
Special seminar by Dr. Kevin W. Plaxco
Professor of Chemistry & Biochemistry
UC Santa Barbara

Wednesday, April 19, 2017 at 4:00pm
School of Pharmacy, Room 3020

"Counting molecules, dodging blood cells: real-time molecular measurements directly in the living body"
The development of technology capable of continuously tracking the levels of drugs, metabolites, and biomarkers in situ in the body would revolutionize our understanding of health and our ability to detect and treat disease. It would, for example, provide clinicians with a real-time window into organ function and would enable therapies guided by patient-specific, real-time pharmacokinetics, opening a new dimension in personalized medicine. In response my group has pioneered the development of a “biology-inspired” electrochemical approach to monitoring specific molecules that supports real-time measurements of arbitrary molecular targets (irrespective of their chemical reactivity) directly in awake, fully ambulatory subjects.
KU Today